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Abstract

Soil erosion, while a typical geomorphic process, can be amplified and accelerated by land use
and climate change. In Iceland, changes in vegetation cover since settlement in the 9th century
have led to increased soil erosion. Current field-based methods for erosion mapping and
monitoring are difficult and costly to employ frequently and over large regions. The systematic
and synoptic nature of satellite remote sensing is well-suited for wide-scale environmental
monitoring. However, fine-scaled erosional features may be obscured in coarse and
moderate-resolution imagery (30-10 m). Here the synergistic use of RGB uncrewed aerial
vehicle (UAV) and multispectral Sentinel-2 as well as field-based data, in the form of existing
land monitoring data and quadrats for validation, is examined to bridge the gap between
ground-based and spaceborne monitoring in northeastern Iceland. High resolution (< 5cm) land
cover maps from UAV imagery are produced with a random forest (RF) classifier, for six sites.
Field validation shows high overall accuracy (> 90%). These data are upscaled to build a RF
regression model estimating bare soil cover, yielding good results (R* = 0.814). Using
governmental land-monitoring data (GroLind), erosion severity classes are defined and a map for
a portion of northeastern Iceland is produced. This study highlights the potential of multiscale
remote sensing for estimating sub-pixel landscape information relevant to environmental
monitoring in tundra environments.
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1.0 Introduction

Soil erosion is a geomorphic process through which soil particles (sediments, soil aggregates,
and organic matter) are entrained and transported away from their primary location (Poesen,
2018). Through intense erosion, soils become less fertile as nutrients are removed (O. Arnalds et
al., 2001). Natural erosive processes such as rain, wind, and gravity as well as biological
processes including trampling and burrowing by wildlife are typical in most landscapes (Poesen,
2018). Anthropogenically induced changes in land use and climate however, can amplify and
accelerate erosion beyond the capability of an ecosystem to generate new soil, causing rapid

landscape degradation (Borrelli et al., 2021; Poesen, 2018).

Vegetation cover has a strong influence on the rate and severity of soil erosion (Duran Zuazo et
al., 2008; Gyssels et al., 2005). Vegetation can shield erosion prone soil from wind and
precipitation as well as provide support against gravity on slopes, limiting soil loss (Tang et al.,
2021). Vegetation composition, structure, and coverage is changing in many high latitude regions
due to climate change and other anthropogenic pressures. The exact nature of these changes
however and their impact on soil erosion is complex and not well understood (Myers-Smith et
al., 2020; Streeter & Cutler, 2020). In order to better understand this change and effectively
target restoration and mitigation efforts, monitoring of vegetation cover and soil erosion change

must be improved.

Iceland has experienced rapid and severe landscape degradation since human settlement in the

9th century, including dramatic loss in vegetation and increase in soil erosion (O. Arnalds, 2015;
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Dugmore et al., 2009; Greipsson, 2012; Olafsdottir et al., 2001). This is particularly true for the
highland region which encompasses remote wilderness areas above the potential treeline
(approx. 200-400 m a.s.l (Boulanger-Lapointe et al., 2022)), where sub-alpine tundra vegetation
are dominant (Thorhallsdottir, 1997). Grazing pressure increased dramatically in the highlands
with animal husbandry accompanying human settlement, ~11,00 years ago (McGovern et al.,
2007). The highlands are most sensitive to this change due to the short growing season and
disturbance from glacial and volcanic activity (O. Arnalds et al., 2023; Dugmore et al., 2009).
Disturbed vegetation in this region is slow to recover, leaving soil exposed to further disturbance
(Figure 1 & 2). The soils found in much of the highlands tend to lack strong cohesive properties
and are easily entrained by frequent, strong winds (O. Arnalds, 2015). The result is the poor land
conditions seen in many parts of Iceland today, with over 39% of the country's total area

considered to be eroded as of 2001 (O. Arnalds et al., 2001; O. Arnalds et al., 2023).

Currently, the main source of erosion data for Iceland comes from a series of maps produced
Between 1991 and 1997. During this time the Agricultural Research Institute (ARI) and Soil
Conservation Service (SCS) of Iceland used field observations and manual interpretation of
Landsat 5 imagery to map erosion severity across the country. The project produced coarse
resolution products categorizing erosion severity into 6 classes (0-5) (O. Arnalds et al., 2001; O.
Arnalds, 2015). This mapping provided critical quantification of land conditions on a wide scale.
However, in the 27 years since these maps were produced it is likely that land conditions have
changed in many regions. This includes both the progression and regression of soil erosion. As
such the ability to accurately examine and analyze current land conditions using these maps is

limited (O. Arnalds et al., 2023).
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Satellite imagery and machine learning are important tools that have improved the accuracy and
efficiency of many monitoring and mapping tasks including those related to soil erosion (Sepuru
& Dube, 2018). Such tools have been applied to regions of Iceland in previous studies.
Fernandez et al., 2022 highlights the potential of remote sensing for this application, using
Sentinel-2 imagery alongside topographic data to predict erosion risk from field observations of
erosion severity provided by the SCS. While the results show good accuracy, nuanced
information is lost in the broad 6-point classification scheme and physical attributes important to

management such as vegetation cover cannot be interpreted from the results.

It has been common for the Normalized Vegetation Index (NDVI) to be used as a proxy for
vegetation cover. NDVI takes advantage of the divergent spectral response of green vegetation in
the red and near infrared (NIR) portions of the electromagnetic spectrum. In simple terms, high
NDVI are interpreted as indicating dense, healthy green vegetation. Low NDVI values are
interpreted as indicating the lack of vegetation and therefore the relative dominance of bare

surface cover (Hurcom & Harrison, 1998; Xiao & Moody, 2005).

While NDVI can be well correlated with vegetation cover this is not always the case (Ayalew et
al., 2020; Laidler et al., 2008). Changing climate in the arctic, which drives change in vegetation
composition, further breaks down this relationship. In particular the increase in tundra shrub
communities is thought to inflate the near infrared (NIR) portion of an area's spectral profile
(Juszak et al., 2014). Therefore if a positive relationship between shrub abundance and NDVI is

seen; this relationship may mask eroded areas (Kodl et al., 2024). Other vegetation indices (VIs)
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have shown promise in determining vegetation cover and previous studies suggest that these VIs
should be considered in addition to NDVI (Rithimiki et al., 2019). Furthermore, other VIs show
better sensitivity compared to NDVI for tundra species, especially VIs using red-edge (RE)

bands (Buchhorn et al., 2013; Liu et al., 2017).

Adding further complication is the aggregation of spectral information in coarse resolution
remote sensing products (i.e Sentinel-2 satellite imagery). This information loss is a particularly
important consideration in arctic tundra landscapes, where many processes contribute to high
heterogeneity in landscape features (Virtanen & Ek, 2014). Vegetation and land cover can be
highly spatially variable. Uncrewed aerial vehicles (UAVs) can produce very high resolution
imagery and continue to become more accessible and adopted by the research and management
communities. There are various ways in which UAV and satellite data can be used
synergistically. One approach is the calibration of satellite data or models acting on satellite data

using UAV data, often termed upscaling (Alvarez-Vanhard et al., 2021).

UAV data upscaling has been shown as an effective method for model calibration in fractional
land cover problems relating to tundra and similarly heterogeneous landscapes (Bergamo et al.,
2023; Riihimaéki et al., 2019). By applying machine learning at multiple scales, linked through
spatial aggregation, the dominance of sub-pixel physical characteristics can be estimated.
Examples of UAV upscaling previous applications include mapping fractional coverage of
invasive shrub species in northern Estonia and forage lichen in northern Canada (Bergamo et al.,
2023; Fraser et al., 2022). For vegetation related problems NIR coverage is particularly

important due to the prominent spectral signature of vegetation related to plant cell structure and
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pigments (Knipling, 1970). While UAVs mounted with multispectral cameras, which have NIR
coverage, are increasingly accessible they remain less common and more costly than those
mounted with RGB cameras. Multispectral based classifications tend to produce higher accuracy
results compared to RGB based classifications. However, RGB based classifications from UAV

data often produce good accuracy (> 90%) (Fraser et al., 2022).

The aim of this study is to examine the integration of UAV and satellite data, through upscaling,
as a means for estimating bare soil cover for soil erosion monitoring. This is accomplished by
classifying UAV imagery to extract bare soil, which provides training data for a satellite-scale
regression model estimating fractional bare soil cover. These data are combined with existing

land monitoring information to classify soil erosion severity.

2.0 Materials and Methods

2.1 Study site

The study was conducted at six sites located in northeastern Iceland (Figure 1). Sites were
randomly chosen in the Mulaping and Nordurping areas of the highlands, above 400m elevation
(O. Arnalds et al., 2023). All sites are located within open sheep grazing commons (O. Arnalds
& Barkarson, 2003). The Modrudalur weather station nearby shows a mean annual temperature
of 0.5 °C and mean annual precipitation of 348.6 mm from 1960 to 2007 as well as a mean
annual wind speed of 5.5 m s from 1981 to 2007 (Icelandic Meteorological Office, 2012).
Vegetation types in the region are a mix of heath, grasslands, moss heaths and wetlands

(Kardjilov et al., 2006). The UAV survey sites encompass a range of erosion severity, from fully
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vegetated to severely eroded areas (O. Arnalds et al., 2001). Soils in the region are primarily

Andosolic and Virtisolic (O. Arnalds, 2015; O. Arnalds & Oskarsson, 2009)

Figure 1: Location of UAV survey sites, northeastern Iceland. Survey sites marked with orange

dashed lines.

2.2 Data

2.2.1 UAV data

In July 2023, imagery was collected along six 1.4 - 3.1 km transects in eastern Iceland, using the
RGB sensor onboard a DJI Mavic 3T quadcopter UAV. The red band has a wavelength of 650

nm (+16 nm) the green 560 nm (£16 nm) and the blue 450 (16 nm).
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Figure 2: An oblique UAV image showing partially eroded landscape, northeastern Iceland.

The UAV was flown at approximately 80 m above ground level. Images were set to capture with
80% front overlap. The width of each transect was approximately 60 m. Best attempts were
made to coordinate flights at similar times relative to solar noon, however due to weather
conditions and time constraints this was largely not possible and periods of up to 5 hours
separate the capture times between sites. The long daylight hours at this time of year in

high-latitude regions however minimized differences in the amount of illumination.



The UAV data were processed in Agisoft Metashape version 2.1.0. Photogrammetric processing
was applied following the recommended steps from the software developers (Agisoft LLC., St.
Petersburg, Russia). Images containing excessive motion blur were removed prior to processing.
Georeferencing was based on the GPS unit and internal measurement unit onboard the UAV,
producing an estimated horizontal positioning error of ~3m. This process produced a single

orthomosaic for each of the six transects with spatial resolutions of 4-5 cm.

2.2.2 Quadrat data

Prior to each UAV flight 10 randomly selected points along each transect were overlaid with a 50
cm-by 50 cm quadrat. An image of each quadrat placement was taken at waist height (~105 cm)
with a digital camera (Figure 3) and the percent bare soil within the quadrat was recorded. The
center of each quadrat was marked with a flag, for identification in the UAV imagery, and the

location was recorded with a Garmin Etrex 10 handheld GPS unit.

This data was used to examine the agreement between field observations and the UAV
classification of percent bare soil. The coordinate of each quadrat placement was used to find the
corresponding flag in each orthomosaic. A 50 cm-by-50 cm polygon was drawn around the flag,
using the corresponding field photograph to inform polygon delimitation. Percent bare soil
within the polygon was found by counting the number of pixels classified as bare soil in the
UAV-scale classification, using the zonal histogram tool in QGIS v3.28 (QGIS Development
Team, 2009). This value was then divided by the total number of pixels within the polygon and
multiplied by 100 (Riithiméki et al., 2019). The data was evaluated by calculating the Root Mean

Square Error (RMSE).
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Where ¥, is the classification based estimate and y; is the observed value from the field.

Due to human error in the field the quadrat points for sites 400-4 and 400-5 fell outside of the

UAV imagery. As a result quadrat based RMSE values for these two sites could not be

calculated.

Figure 3: A series of images showing example quadrat placements used for field validation of the



UAV-scale classification.

2.2.3 Sentinel-2 data

Sentinel-2 data for the highland region was acquired in 16-bit from the Sentinel-2 Global Mosaic
Service, using the Advanced Temporal Mosaic tool. The temporal range was set to search data
acquired between July 31, 2023 and August 31, 2023. The SEN2COR atmospheric correction
method and ESA cloud mask options were used (Main-Knorn et al., 2017; Sentinel-2 Global

Mosaic Service, 2014).

2.2.4 Field validation data

GroLind is a land monitoring initiative from the Icelandic Soil conservation service. Part of the
GroLind project is field observations at over 1000 marked sites. Each site consists of a 50 x 50 m
plot containing two perpendicularly intersecting 50 m long belt transects. Approximately 200
sites are visited annually resulting in a five year revisit time for each site. At these sites variables
relating to ecological status are recorded, including vegetation height, soil depth, soil type, and
erosion rating (Marteinsdottir et al., 2021). Here primary erosion severity and fractional
vegetation coverage data from sites visited in 2019 were used to examine the relationship

between field observed erosion severity and modeled bare soil cover.

10
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2.3 Fractional vegetation cover

2.3.1 Vegetation indices

a)
Vigreen
Vegetation
Orthomosaics (~5¢m) Indices RF Classification Data Aggregation
n=6
Satellite C) UAV-Satellite integration
(Y=
70N
4 f ‘V - A
—_ ¥ K= : a(x) = folx) + f1{x) + fo{x) oo
I N |
MSAVI2
Se—0)
NDRET NOVI UAV-Satellite
data transfer
Vegetation
Sentinel-2 Data (10m) Indices RF Regression Model

f

d) Erosion Severity

sman

Define Class-breaks

GroLind Data

Soil Erosion Map

Figure 4: Workflow for UAV data upscaling and erosion severity mapping. a) UAV data

treatment after preprocessing, b) Sentinel-2 satellite data treatment, c) UAV and Sentinel-2

satellite data integration, d) integration of GroLind data for erosion severity mapping.
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The lack of an NIR band in the UAV data reduces the ease with which vegetation can be
distinguished from background materials. This is because most vegetation strongly reflects in the
NIR range and absorbs strongly in the visible range, for green vegetation the red range. This

divergent signature is typically distinct from the background signature.

In order to provide more information to the UAV-scale model and improve vegetation and soil
separability two RGB VIs were calculated using the terra package for R v4.2.2 (Hijmans, 2023;
R Core Team, 2022). The two VIs: VIgreen and EXGR, were selected based on their ability to
effectively separate bare soil and vegetation, demonstrated in a previous study (Vieira &
Rodrigues, 2021). To calculate these VIs the RGB data was first normalized using a two-step

process (Guijarro et al., 2011; Marcial-Pablo et al., 2019; Vieira & Rodrigues, 2021).

Where R, G, B are the values in the original red, green, and blue channels of the UAV data,

respectively. R, , G » and B, are the maximum values of the original 8-bit channels (255).
i)

R G B

n n n

R+¢+8 9 = R+c 1B b = R +G +B
n n n n n n n n n

r =

Where r, g, and b are the normalized spectral components.

With the normalized data the VIs were calculated as follows (Gitelson et al., 2002; Meyer &

Neto, 2008).

S Rk
Vigreen = Gir
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EXGR = (29 —r — b) — (1.4r — g)

2.3.2 UAV-scale classification

For the UAV-scale classification training and validation data were generated for 5 class types:
bare soil (dark), bare soil (light), green vegetation, non-green vegetation, and water (for
examples see Figure A1). The goal of using these classes rather than a binary bare soil
presence-absence scheme was to reduce error by providing narrow classes with less variation in
spectral signature. Along each transect 10, 50cm-50cm polygons were manually delineated for
each class, in QGIS, resulting in 50 polygons per transect. The location of the polygons was
determined by examining the RGB orthomosaics, selecting areas of homogeneous, class

representative cover.

The two Vs, each of the normalized RGB bands, and the raw orthomosaic RGB bands were
used as predictive variables. Each pixel within the polygons (~360 per polygon) were sampled to
extract values for these variables. This provided approximately 18,000 sampled points per
transect. These data were split randomly into training (70%) and validation (30%) sets, using a
stratified approach to ensure an equal number of training and validation points between the five

classes.

A RF classification model was implemented using the caret and randomForest packages in R
(Kuhn & Max, 2008; Liaw & Wiener, 2002). RF was chosen based on the accuracy of the model
for classifying land cover from RGB UAV imagery demonstrated in previous studies (Bergamo
et al., 2023; Fraser et al., 2022). An individual model was fit for each transect to improve

site-specific accuracy due to the previously mentioned variation in illumination conditions (Kodl

13
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et al., 2024). A 10-fold cross-validation was used. The number of variables to randomly sample
at each split, a parameter known as mtry, was optimized using a grid search, testing values
between 1 and 8. The number of trees was set to a constant of 500. A confusion matrix was
produced for each site using the validation data, accuracy and Kappa values were used to assess
model performance. The model with optimal parameterization for each site was applied to a

stack of raster layers containing the eight variables.

2.3.3 Upscaling

To upscale the UAV-scale classification a within-pixel coverage method was used to find percent
bare soil (Bergamo et al., 2023; Rithimaiki et al., 2019). A grid was generated directly from the
Sentinel-2 data to match the 10 m spatial resolution. Segments of this grid were clipped to match
the extent of each transect. The zonal histogram tool in QGIS was used to compute the number
of pixels in the UAV-scale classification assigned to each of the five classes, within each grid
cell. The two bare soil classes were merged and compared to the occurrence of the remaining

classes within each grid cell to determine the percent bare soil coverage (0-100).

2.4 Satellite-scale model

2.4.1 Satellite vegetation indices

Similarly to the UAV-scale classification, satellite VIs provide more spectral information and can
improve the separability of bare soil and vegetation. Here four VIs were derived from the
Sentinel-2 data: GCI, MSAVI2, NDVI, and NDREI1. The first three VIs were selected based on
the performance when previously applied to identify overgrazing hotspots (Harmse et al., 2022).

The fourth VI was selected based on the potential shown in a previous study to identify bare soil
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and performance in regions of low vegetation cover (Andreatta et al., 2022). These VIs were

calculated as follows.

Gcl = ME_

Green

-1

Where NIR and Green are Sentinel-2 bands 8 and 3, respectively.

2NIR+1\(2*NIR +1)’—8(NIR—Red)
2

MSAVI2 =

(NIR—Red)

NDVI = (NIR+Red)

Where Red is Sentinel-2 band 4.

E o_REms)

s,
NDREL =g FE.»

Where RE-,, and RE,s are Sentinel-2 bands 6 and 5, respectively. Sentinel-2 bands 5 and 6 are
20 m resolution and therefore were resampled to match the 10 m resolution of the remaining

bands used.

2.4.2 Regression model

A point was placed at the center of each grid cell produced in the upscaling process. The
calculated percent bare soil for each cell (see section 2.3.3) was then transferred to the
corresponding point. The values from each of the Sentinel-2 variables, bands 2-8, and the four
Vs were sampled at each point. This produced 18,287 data points. These data were split into

training (70%) and validation (30%) sets.

A RF regression model was implemented on the training data using the caret and randomForest
packages in R (Kuhn & Max, 2008; Liaw & Wiener, 2002). RF was chosen based on its accuracy

in upscaling applications presented in previous studies (Fraser et al., 2022). A model fitting
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procedure similar to that used for the UAV-scale classification model was used. A 10-fold cross
validation was used. The mtry parameter was optimized using a grid search with values between
1 and 11. The number of trees was set to a constant of 500. The best model was chosen based on
RMSE and R?. The best model was run on the validation set and the RMSE and R? were
calculated to assess the models predictive performance. The final model was applied to a stack of

raster layers containing the 11 variables.

2.5 Erosion severity

The GroLind data were subset to contain only points within the highlands region (above 400m
elevation) leaving 76 sites. Two variables from these GréLind points were extracted. The first
variable, primary erosion severity, ranked on a scale of one (little erosion) to five (extremely
severe erosion). The second variable, fractional vegetation cover, ranked on a scale of one (0%)
to five (100%). A Pearson correlation test was run on the two variables to establish if there is a
significant relationship between the fractional vegetation cover and erosion severity as observed
in the field. The results indicate a strong (0.82) significant (p-value < 0.005) relationship. A
linear regression was fit to estimate erosion severity from bare soil cover within the GroLind
data. The satellite-scale bare soil cover model was reclassified to the five-point fractional
vegetation cover scale used in the GroLind data. The linear regression was then applied to this
data to estimate soil erosion severity; non-whole values of erosion severity were reclassified to
the nearest whole number in order to fit the five-point GroLind classification scheme (e.g. 1.5 —

2).
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3.0 Results

3.1 UAV-scale classification

The random forest classifier produced an overall accuracy of 96.6% across all six sites with a
Kappa of 0.95 and RMSE of 15.36% (Table 1). The best results were achieved at site 400-5, with
an accuracy of 98.6% and Kappa of 0.98. The poorest results were achieved at site 400-3 with an
accuracy of 92.2%, a Kappa of 0.90, and RMSE of 40.17%. Aside from site 400-3 all sites

achieved accuracy greater than 95%, Kappa scores greater than 0.94, and RMSE less than 9%.

Table 1: Summary of the accuracy results for UAV-scale classification at each site and overall.

accuracy and kappa based on cross validation, RMSE based on quadrat fractional coverage.

Site: Accuracy (%): Kappa: RMSE (%):
Overall 96.6 0.95 15.36

400-1 97.4 0.97 6.67

400-3 922 0.90 40.17

400-4 96.6 0.94 -

400-5 98.6 0.98 -

500-3 97.8 0.97 8.78

500-6 97.0 0.96 5.76

3.2 Upscaling UAV data

Figure 5 shows an example of the within-pixel fractional coverage aggregation used to upscale
the UAV-scale classification results. Relatively large erosional features, where continuous areas

of bare soil are exposed, are well represented in both the UAV classification and aggregated data.
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Away from the center of these features exposed soil becomes fragmented and appears in smaller
patches, as vegetation cover increases. This pattern is distinct in the UAV-scale classification
results. Due to the aggregation inherent in the upscaling process however, this pattern is
obscured as the resolution becomes much larger than individual erosional patches. While the
aggregated data tend to show the pattern of increased vegetation with distance away from
erosional features, the distribution of exposed soil within a cell is lost. A result of this is that the
precise edge of an erosional feature can be difficult to discern at the aggregated scale. For
example, if the edge of an erosional patch is outlined by dense vegetation the fractional coverage
from the aggregated data may be low. The low bare soil coverage may not reflect the severity of

erosion in that cell; this effect is highlighted in the annotated inset of Figure 5.

Bare sail:

Fractional bare soil cover:

CJex W 100%

Figure 5: UAV-scale classification of bare soil shown in black (presence of bare soil), overlain
with fractional bare soil coverage produced from aggregation during the upscaling process. Site
400-3. Black arrow on the left panel shows an example of an erosional feature edge being

obscured due to aggregation.
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3.3 Satellite regression and erosion severity

The satellite-scale percent bare soil cover regression model produced an R? of 0.814, for all sites
(Figure 6a). The site specific results show a wide range of R? values. Site 400-1 (Figure 6b)
produced the lowest R? (0.403), showing a large number of points estimated to have a greater

bare soil cover than classified in the UAV data. Site 500-3 produced the highest R? (0.924).
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Figure 6: A series of scatter plots showing the percent bare soil coverage from the satellite-scale
regression model (predicted) compared to the aggregated UAV-scale classification (observed),
best fit line shown in orange. Top (a) panel shows the results for all six sites overall. Bottom

(b-g) panel shows the results at each site.

Figure 7 shows the output bare soil cover (a) and erosion severity (b) maps produced through
UAV data upscaling. The UAV sites largely avoid regions of very dark sands and gravel like
those near site 400-4 and 400-5 (Figure 7¢). In the bare soil cover map (Figure 7a) regions with
this composition appear to have higher vegetation cover than expected. As a result the erosion

severity assigned to these areas tends to be lower than anticipated.
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Figure 7: a) percent bare soil cover map from upscaled UAV data, b) erosion severity map from
GroLind erosion severity data c) Sentinel-2 true color composite d) true color composite

showing the extent of panels a-c.

4.0 Discussion

This study illustrates the potential of integrating UAV and satellite data to extract physical
parameters, in this case bare soil cover, for mapping and monitoring soil erosion in tundra
environments. The methods presented here show that UAV data upscaling with a RF regression
model can provide continuous estimates of percent bare soil cover at the satellite pixel scale. The
use of UAV data in this way could provide a cost-effective alternative to on-foot field

measurements and produce high quality training data for semi-automated mapping from satellite
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imagery. Parameters upscaled from UAV data can be integrated with existing soil erosion data to

expand the scope beyond measured locations (Bergamo et al., 2023).

4.1 UAV-scale classification

The UAV-scale RF classifications based on RGB VI’s were able to separate bare soil and
vegetation with accuracies comparable to multispectral UAV based classifications (Furukawa et
al., 2021). The use of multiple VI’s and a five class scheme improves upon results of previous

studies implementing a binary scheme on RGB digital number data alone (Riithimiki et al.,

2019).

Due to the single-image width of the orthomosaics used here and the lack of ground control
points or Real-Time Kinetic (RTK) data from a high accuracy Global Navigation Satellite
System (GNSS) receiver, digital elevation models (DEMs) could not be generated for the UAV
sites. The use of such DEMs in the UAV-scale classification could further improve accuracy. The
effectiveness of elevation variables and RGB textural information for UAV based vegetation
classification is highlighted by Bergamo et al., 2023, using a UAV system similar to that
deployed here. While textural information could have been derived from the UAV data used in
this study, producing these data is computationally expensive and were therefore excluded. With
more computational resources however textural information can be derived from UAV data

directly in R using the GLCM package, as in other studies (Bergamo et al., 2023).

The site specific classification accuracy shows low variation, with a range of 6.4% and 0.08 in
accuracy and kappa measures, respectively. Other studies which have implemented RGB UAV

data for vegetation classification tasks show similar results across a range of environmental
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settings (Bergamo et al., 2023; Furukawa et al., 2021; Rithiméki et al., 2019). The low variation
in accuracy between sites may be due in part to the site specific model approach taken here.
While fitting an individual model for each site is more time consuming compared to fitting a
single model across all sites it likely limits the error induced by variations in illumination and
weather conditions (Furukawa et al., 2021; Wang et al., 2023). This is an important consideration
for implementing these methods across a greater number of UAV sites in regions where weather
can change dramatically over short periods, such as in northeastern Iceland. Use of tuning
functions, like the grid search from the caret package provides the potential for site specific

model fitting to be semi-automated.

4.2 Upscaling and satellite scale mapping

The upscaling methods implemented here illustrate that the use of UAV data can provide large
training and validation sets for building satellite-scale models, as is highlighted in previous
studies (Fraser et al., 2017, 2022). From the six UAV sites a total of 12,801 training and 5,487
validation points were generated. Producing a dataset of this size at the resolution of Sentinel-2
imagery via on-foot sampling would be laborious and costly.

The satellite-scale RF regression model shows high overall agreement (R? = 0.814) with the
UAV based bare soil cover data (Figure 5 & 6a). These results highlight the power of RF
regression for estimating fractional coverage of physical parameters across a Sentinel-2 pixel.
Previous studies have illustrated the power of RF regression for estimating fractional cover of
invasive plant species from satellite data, producing accuracy similar to that shown here
(Kattenborn et al., 2019; Shiferaw et al., 2019). While RF regression appears to be a robust

model for UAV upscaling, based on these results and those of previous studies, various models
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should be examined through more exhaustive performance measures and for variables beyond

those related to vegetation (Fraser et al., 2022; Kattenborn et al., 2019)

The site specific regression accuracies show a large range, with R? values much lower than the
overall value. The lowest R? (0.403) was produced at site 400-1 (Figure 6b). Site 400-1 is
characterized by a consistent pattern of many small bare soil patches (5 - 20 cm diameter) and a
high degree of non-green vegetation cover. The VI’s used for the satellite-scale regression model
largely rely on the NIR and red bands, as do most widely used VI’s. The spectral signature
produced by non-green vegetation at these wavelengths is not as easily distinguished from bare
soil as green vegetation is (French et al., 2008). This is likely why the model predicts higher bare
soil cover at site 400-1 than is shown in the UAV data. The inclusion of shortwave infrared
(SWIR) information or indices may improve the performance of the model for non-green
vegetation dominated areas. Green and non-green vegetation show increased separability in the
2200 nm range, as such the use of Sentinel-2 band 12 (2190 nm) is recommended in future
applications (Amin et al., 2021). Despite the lack of NIR and SWIR information in the UAV data
the classification achieved good results in separating bare soil and non-green vegetation for site
400-1 (Table 1). This is likely due to the high resolution of the UAV data, suggesting that
increased resolution may be able to improve separability of spectrally similar cover types.
Therefore, higher resolution multispectral satellite data, for example PlanteScope (3 m), may

better detect non-green vegetation and produce better results.

4.3 Future work

While the fraction of bare soil to vegetation cover over a given area is strongly related in many

areas to soil erosion it is not the sole factor (Zhongming et al., 2010). This study has shown UAV
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data upscaling to be an effective method for estimating variables related to soil erosion. In
addition to improving estimates of bare soil cover, future efforts should investigate additional

parameters that may benefit from upscaling.

Related to vegetation cover, vegetation structure is also related to soil erosion. Erosion severity
influences, and is influenced by, the types of vegetation present as well as vegetation distribution
over a given area (Jiao et al., 2009; Tsuyuzaki & Titus, 1996). Estimating fractional coverage of
vegetation such as woody shrub species for example may be useful for soil erosion monitoring
and has been successfully upscaled from UAV data using Sentinel-2 data in previous studies.
Having an estimate of fractional shrub coverage may also help address issues related to arctic
shrubification obscuring soil erosion is satellite data raised by a recent study in Iceland (Kodl et

al., 2024).

Producing high resolution DEMs from UAV site data opens the potential for complex structural
variables to be derived. Upscaling of canopy metrics using synthetic aperture radar (SAR) data
may be useful in further estimating vegetation structure due to the various scattering mechanisms
associated with SAR and its application in classifying tundra vegetation (Ullmann et al., 2014).
SAR can also be used to estimate surface roughness associated with surface sediment properties
in regions with little vegetation cover (Gaber et al., 2015). Using high resolution UAV derived
DEMs could provide a method for relating SAR backscatter to surface roughness associated with

small scale erosional features (Ullmann & Stauch, 2020).
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5.0 Conclusion

This study demonstrates the efficacy of integrating UAV and satellite data to assess physical
parameters for mapping and monitoring soil erosion in tundra environments. Using a
combination of RF classification and regression models we achieved promising results in

estimating bare soil cover and erosion severity at the satellite-scale from UAV data.

The UAV-scale classifications showed high accuracy across all sites despite suboptimal
illumination and weather conditions. This highlights the robustness of using multiple VI’s and a
site specific model approach for classification. Upscaling of the UAV classifications to estimate
bare soil cover at the satellite-scale using a RF regression model produced high overall accuracy.
However, site specific assessment showed variation in accuracy, indicating underlying land cover
conditions may impact results locally. As such, incorporating training data from a wide range of
land conditions and cover types would likely improve the applicability of the model. The use of
additional spaceborne sensors, such as SAR, as well as UAV derived DEMs should be integrated
into this framework as a means for improving erosion characterization. In conclusion the
methods and findings presented here illustrate the power and potential of integrating UAV and

Satellite data for monitoring soil erosion and land degradation in tundra environments.
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Appendix

Figure A1l: Examples of class types used in the UAV-scale classification. a) Bare soil (dark), b)

bare soil (light), ¢) water, d) non-green vegetation, e) green vegetation. Specific examples for a
and d are highlighted with red circles.
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